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We investigate theoretically the spin echo signal of an electron localized in a quantum dot and interacting
with a bath of nuclear spins. We consider the regime of very low magnetic fields �corresponding to fields as
low as a militesla in realistic GaAs and InGaAs dots�. We use both the exact numerical simulations and the
analytical theory employing the effective pure dephasing Hamiltonian. The comparison shows that the latter
approach describes very well the spin echo decay at magnetic fields larger than the typical Overhauser field,
and that the time scale at which this theory works is larger than previously expected. The numerical simulations
are also done for very low values of electron spin splitting at which the effective Hamiltonian based theory
fails quantitatively. Interestingly, the qualitative difference in the spin echo decay between the cases of a
homonuclear and a heteronuclear bath �i.e., bath containing nuclear isotopes having different Zeeman ener-
gies�, predicted previously using the effective Hamiltonian approach, is still visible at very low fields outside
the regime of applicability of the analytical theory. We have found that the spin echo signal for a homonuclear
bath oscillates with a frequency corresponding to the Zeeman splitting of the single nuclear isotope present in
the bath. The physics behind this feature is similar to that of the electron spin echo envelope modulation. While
purely isotropic hyperfine interactions are present in our system, the tilting of the electron precession axis at
low fields may explain this result.
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I. INTRODUCTION

The problem of the dynamics of an electron spin coupled
by a hyperfine �hf� interaction to a bath of nuclear spins has
been a focus of much theoretical attention, since the interac-
tion with the nuclear bath is the most limiting decoherence
mechanism in spin qubits based on quantum dots made of
III-V materials.1,2 While at high magnetic fields �B�0.1 T
in large GaAs dots when spin echo is considered� the dipolar
interactions between the nuclear spins are the main source of
dynamics leading to decoherence seen in spin echo �SE�
experiment,3–7 at lower fields the electron spin dephases and
relaxes due to hf interaction alone. This process has been
studied theoretically for free evolution or SE both by analyti-
cal methods6,8–18 and by exact numerical simulations.10,19–23

Here we focus on the theoretical description of SE decay due
to hyperfine interaction alone,6,11,12,16,17,21 since the SE ex-
periment is currently the most developed measurement of
coherence decay in electrically controlled gated GaAs quan-
tum dots,24–26 and there has been a recent progress in per-
forming SE measurements on optically controlled electron
spins in quantum dots27,28 and spins of electrons bound to
donors.29

Most of the analytical approaches were concentrated on
the “perturbative” regime9,13–15,18 of magnetic fields in which
the electron Zeeman energy � and the total hf energy A
��iAi �where the sum is over all the nuclei and Ai are the
individual hf couplings� fulfill A /��1. Only recently it has
been proposed16,17 that an analytical calculation can be well-
controlled under a much weaker condition of ��A /��N
�1 �N being the number of nuclei interacting with the cen-
tral spin�, allowing the calculation of decoherence at much
lower B fields �which only have to be larger than the typical

Overhauser field due to the nuclei, which is on the order of a
few mT in large GaAs dots�. In this theory, as in earlier
closely related studies,6,11,12 an effective pure dephasing
Hamiltonian describing hyperfine-mediated interactions be-
tween the nuclei is used. For a pure dephasing problem one
can formulate a diagrammatic expansion technique for spin
decoherence time evolution, and a class of diagrams of lead-
ing order in 1 /N expansion can be resummed,17 leading to
predictions for narrowed state30,31 free induction decay
�FID�, SE decay, and also decoherence under any other dy-
namical decoupling23,32–35 sequence of ideal � pulses driving
the qubit.

In this article we present a comparison between the SE
decay calculated using the ring diagram theory �RDT� of
Refs. 16 and 17 and exact simulations of a system with N
=20 nuclei. In this way we set out to clarify the limits of
quantitative applicability of the RDT, i.e., the ranges of elec-
tron spin splitting and time scales on which the analytical
theory based on effective Hamiltonian accurately describes
the SE decay. We also investigate numerically the regime of
very low spin splittings, at which the RDT is bound to fail,
and we analyze simplified approaches which can be used to
model �at least on a certain time scale� the SE signal in this
regime.

The exact results confirm that the RDT is quantitatively
accurate as long as ��1, and that the presence of multiple
nuclear isotopes �having different Zeeman splittings� is cru-
cial for qualitatively correct description of the SE decay at
these low fields. While with N=20 spins used in the exact
calculation it is impossible to unequivocally discern whether
it is ��1 or A /��1 which is controlling the quantitative
agreement, our simulations strongly suggest that the qualita-
tive �or even semiquantitative� predictions of the RDT still
hold even at lower B fields. We observe that RDT correctly
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predicts many qualitative features of the dephasing process
even for ��1, i.e., the RDT results are valid �at least quali-
tatively, and at least at certain time scale �R� beyond the
regime A /��1. The striking qualitative difference in SE
decay between a heteronuclear and a homonuclear system is
clearly visible for ��1 �when A /��1�, and the time scale
at which the majority of the decay �say, by half of the initial
amplitude� occurs is reproduced by the RDT. This leads us to
the conclusion that the smallness of A /� is not necessary for
correct analytical description of the spin echo signal.

Another interesting feature of the low-B SE signal in a
homonuclear system is the oscillation of this signal with time
at a frequency given by nuclear Zeeman splitting. This fea-
ture is clearly visible in our results, and it should not be
confused with the oscillations appearing in a heteronuclear
situation, when the frequencies are given by the differences
of nuclear Zeeman energies of different isotopes.16,17,26

The paper is organized in the following way. In Sec. II we
give a brief outline of the analytical RDT theory and its
limitations, and we describe the system of 20 nuclei to which
an exact numerical method of evaluation of spin dynamics is
applied. In Sec. III we present the results of the calculations,
and in Sec. IV we discuss them and compare them with
simplified “box wave function” model �in which all the hf
couplings are the same�. In Appendix A we provide an ex-
tended discussion of the influence of choice of the hf cou-
plings on the results of the calculations in a system with N
=20 nuclei.

II. THEORETICAL APPROACH

The Hamiltonian is given by

Ĥ = �Ŝz + �
i

	
�i	Ĵi
z + �

i

AiS · Ji, �1�

where � is the electron spin Zeeman splitting, 	
�i	 is the
Zeeman energy of the ith nuclear spin which belongs to
nuclear species 
, and the last term is the hf interaction. We
employ J=1 /2 nuclear spins in the paper.

A. Overview of the effective-Hamiltonian-based theory
of ring diagram resummation

When � is large enough one can perform a canonical
transformation on the full hf Hamiltonian given in Eq. �1�,
which removes the electron-nuclear spin flip terms �Ŝ�Ĵi

�� in
favor of a hierarchy of intrabath hf-mediated interactions in-
volving two or more nuclear spins.6,15–17,21 It has been
argued16,17 that as long as ��1 and when considering the
evolution up to a certain time scale �R, one needs to take into
account only the lowest-order term in the expansion of the

effective Hamiltonian H̃,

H̃�2� = − �
i

Ai
2

4�
Ĵi

z + Ŝz�
i

Ai
2

4�
+ Ŝz�

i�j

AiAj

2�
Ĵi

+Ĵj
−, �2�

where the first two terms are renormalizations of the nuclear
and electron Zeeman energies, respectively, and the third
term is the hf-mediated interaction.

With such an effective pure dephasing Hamiltonian

�where the only electron spin operator present is Ŝz� the di-
agonal elements of the reduced density matrix of the central
spin �giving the average spin in the z direction� remain con-
stant in time, and the evolution of the off-diagonal element
+−�t� can be mapped onto evaluation of the bath-averaged
contour-ordered exponent.12,16,17,36–38 This formulation of the
problem allows one to employ some of the tools of the dia-
grammatic perturbation theory, most importantly the linked
cluster theorem, using which one can write +− as an expo-
nent of the sum of all the connected diagrams contributing to
the original expansion.

The third term in Eq. �2� is a long-range interaction cou-
pling all the N nuclei within the bulk of the electron’s wave
function with comparable strength. For such an interaction
all the terms in the perturbative expansion of +−�t� can be
classified by their 1 /N dependence. The leading-order terms
can then be resummed and the time dependence of the SE
signal can be easily calculated.16,17 Let us stress that both the
exponential resummation of the original expression for +−�t�
and further resummation of a class of linked diagrams are
technically feasible because we use an approximate effective
pure dephasing Hamiltonian.

The decoherence due to the bath dynamics caused by the
dipolar interactions between the nuclear spins �spectral dif-
fusion� can be calculated in a similar way, but only the sec-
ond order �in dipolar coupling� diagram needs to be retained
in the cluster expansion in order to get a controlled descrip-
tion of SE decay,5,6,12 and very good agreement with spin
echo measurements of spins of phosphorus donors in Si was
obtained.5,39,40 Let us also mention that the theoretical
prediction4–6 of the coherence decay time scale of �10 �s
due to the spectral diffusion at high B in GaAs quantum dots
was recently confirmed.26 According to the RDT, in GaAs
dots at sub-Tesla magnetic field the hf-mediated interactions
give the SE decay which is an order of magnitude faster than
the decay due to dipolar interactions,16,17 and since we are
interested in correct description of coherence dynamics on
time scale comparable to its characteristic decay time, we
neglect the dipolar dynamics altogether in the low-B regime
in which our focus is on relatively short times.

For the relevant here case of spin echo we define the
decoherence function W�t��+−�t� �assuming +−�0�=1	,
with which the expectation values of the transverse compo-

nents of the central spin are given by 
Ŝx�t��= 1
2Re W�t� and


Ŝy�t��=− 1
2Im W�t�.

The RDT calculation of decoherence due to two-spin hf-
mediated interactions simply involves diagonalization of N
�N matrix at each time step. Such a T-matrix can be easily
calculated, as described in details in Ref. 17, and the deco-
herence function is given then by the following formula in-
volving the eigenvalues �l�t� of the T matrix,

W�t� = �
l

N
1

�1 + �l
2�t�

. �3�

Let us note that the pair correlation approximation �PCA�
from Refs. 6, 11, and 33 can be extended to the heteronuclear
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case considered here, and it leads to approximating the de-
coherence function by WPCA=exp�− 1

2�l�l
2�. This corresponds

to taking only the lowest order term in the linked cluster
expansion12,17 of W�t�, while in the RDT we resum all the
terms in this expansion which are of the leading order in 1 /N
at every order in the spin-spin coupling.

The key feature of the spin echo sequence in the high-
field ���1� regime is that the dephasing of the central spin

due to Ŝz-conditioned interaction from Eq. �2� with a single
nuclear species �i.e., all the nuclei having the same Zeeman
splitting� is practically completely undone by the pulse
sequence.6,21 However, at magnetic field lower that Bc

��� /�	A /�Ngeff�B �where �	 is the typical difference
of Zeeman splittings between distinct nuclear species and geff
is the effective g factor of the electron� the hf-mediated pro-
cesses between nuclei of different species were predicted to
completely dominate the SE decay.16,17 This prediction has
recently been confirmed experimentally in a spin echo ex-
periment in a double dot singlet-triplet qubit,26 in which the
B dependence of the SE decay and the characteristic oscilla-
tions of the SE signal with frequencies �	
��	
−	� have
been seen. Let us note that with the parameters used in the
calculations below the B field regime in which these hetero-
nuclear process dominate the decay corresponds to ���c
�100 in the units defined below.

B. Approximations inherent in the ring diagram calculation

There are higher-order terms in the expansion of the ef-

fective Hamiltonian H̃, which correspond to virtual processes
involving more than two S-J spin flips.17 These terms also
involve increasing numbers of nuclear spins, i.e., there are

n-spin interactions in H̃�n�, while the RDT can only deal with
two-spin interactions. The exact derivation of these terms
quickly becomes very complicated, but we do not expect
such an expansion to be useful: when the first higher-order

interaction in H̃ becomes important, all the higher order
terms become equally relevant. However, in order to illus-
trate the breakdown of the RDT we will use in the calcula-

tions the two-spin Ŝz-independent interaction which appears

in H̃�3�, in which the coupling constants are proportional to
A3 /N2�2.

A more important approximation underlying RDT is the
fact that the effective-Hamiltonian approach neglects the
transformation of states associated with the canonical trans-
formation �i.e., only the Hamiltonian is transformed�. As a
result, no decay of Sz component of the central spin can be
obtained. This also has consequences for the decay of the
transverse spin components at low B fields, where the
effective-Hamiltonian based theory does not reproduce the
fast “visibility loss” process.6,9,21 The latter process, in which
the transverse spin component decays by ��2 on a time scale
of �N /A can be captured by an exact simulation or by a
theory in which at least some effects of state transformation
are retained, see, e.g., Ref. 6. A more detailed calculation of
this process, which is associated with decay of the Sz com-
ponent of the central spin, is given in Ref. 9, where the

generalized master equation method with the full hf Hamil-
tonian was used.

The transformation of states corresponds to an entangle-
ment of electron spin with the nuclei �each possible initial
bath state gets entangled on a short time-scale with the cen-
tral spin state�. Semiclassically it can be envisioned as a
slight tilting of the electron quantization axis from the z di-
rection, which happens due to hf interaction with the collec-
tive spin of the nuclei. The latter is semiclassicaly repro-
duced as a random vector, and the tilting of the central spin’s
z axis is conditioned upon the size and the direction of this
vector.

The visibility loss is only one example of effects which
are absent in an effective-Hamiltonian approach. There are
also other features, which require the treatment based on the
full hf Hamiltonian. The analytical approaches of this kind
have only been applied to the case of FID decay in a nar-
rowed nuclear state.9,13,14,18 At times much longer than N /A
an asymptotic 1 / t2 coherence decay was obtained,13,14,18

which is not reproduced by the RDT calculation.16,17 How-
ever at high fields �A /��1� most of the narrowed FID
decay is described by an exponential e−t/T2 obtained both by
the RDT �and PCA at very high fields11� and by the general-
ized master equation �GME� approach using the full Hamil-
tonian in Ref. 18, and using the effective Hamiltonian in Ref.
15.

It should be stressed that in the full-Hamiltonian theories
it was argued that the convergence of the calculation is guar-
anteed only when A /� is small, which is a much more re-
strictive requirement than ��1 required in RDT theory.
However, neglecting the higher-order multispin interactions
in the effective Hamiltonian was argued17 to be a good ap-
proximation for ��1 only up to a certain time-scale �R, so
that even if the effects of the state transformation were un-
important, the temporal regime of applicability of RDT is
certainly limited. On the other hand, the GME theories seem
to give a well-controlled result for all times, but in a more
restricted regime of magnetic fields. Let us also mention that
�R might be different for narrowed FID and SE, so that the
conclusions on the relation of our results on SE presented
here to the results obtained for narrowed FID with other
theories should be drawn carefully.

An experimentally relevant question is whether �R is
larger than the time scale of significant coherence decay.
While the estimate of �R�N /A given previously is currently
enough for making contact with recent experiments24–26 on
spin echo in GaAs where it corresponds to about 10 �s,
establishing a more precise bound is of large current theoret-
ical and possibly future experimental interest.

C. Numerical treatment of the full hyperfine Hamiltonian

In order to establish more firmly the regime of applicabil-
ity of the RDT one should compare its predictions with exact
calculations starting from the full hf Hamiltonian from Eq.
�1�. In this way it is also possible to investigate the regime of
very low B fields �corresponding to ��1�, in which no com-
prehensive analytical approach has been successful. In the
exact numerical simulation the time-dependent Schrödinger
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equation for the central spin and the bath is solved using the
Chebyshev polynomial expansion of the evolution
operator.20,22

Although the nuclear spins in GaAs and InAs have J
=3 /2 or 9/2, we use J=1 /2 in the paper. The main expected
effect of such a simplification is slowing down of the decay
�larger nuclear spins are more efficient at decohering the cen-
tral spin�. It allows us however to use the maximal number
of nuclei N=20 in an exact simulation, diminishing thus the
possibility that differences between the numerics and RDT
simply come from the failure of 1 /N expansion of diagrams
describing various processes in the nuclear bath.

In a real quantum dot the number of nuclei interacting
appreciably with the electron is commonly defined as N
�A2 /�iAi

2. We identify this quantity with the finite N used
in the simulations. This leads to ����iAi

2 /�. Furthermore,
we use energy units in which �iAi

2=1, so that � is equal
simply to 1 /� and A=�N in these dimensionless units. The
time is then measured in units of �N /A, which in real GaAs
dot with N�106 corresponds to about 10 ns �with J=1 /2 the
T2

� decay time of inhomogeneously broadened FID �Refs. 10
and 41� is equal to �8 in the dimensionless units used in the
figures�.

Our calculations correspond to the following experimental
procedure. Initially the electron spin is assumed to be di-
rected along the x̂ axis in the +x� state. After evolution for
time t /2 an instantaneous rotation by � about the x̂ axis is

applied to the central spin. The expectation value of the Ŝx

operator at the final time t is then the SE amplitude, plotted
in all the figures as a function of the total pulse sequence
time t. The general formula is given by


Ŝx�t�� = �
+ xeiĤ��̂xe
iĤ� �̂x

2
e−iĤ��̂xe

−iĤ�+ x�� , �4�

where 
 . . . �= 1
ZTrJ� . . . 	 is the average over an unpolarized

nuclear bath �with Z=2N�, and �� t /2.
The calculations have been performed on a model system

of N=20 nuclear spins coupled to the central spin by hf
Hamiltonian from Eq. �1�. The hf couplings Ai were drawn
from a random distribution, with constraint �i=1

N Ai
2=1. We

discuss the choice of such a distribution, and also the sensi-
tivity of the results to the specific choice of Ai, in Appendix
A. Here we remark that with N=20 the SE signals are very
similar one to another for most the choices of the set of Ai,
and below we employ the set of Ai corresponding to a rather
typical SE signal. In the heteronuclear case we have divided
the nuclei into three species with ten, six, and four members
in order to mimic the ratios of concentrations of various iso-
topes in GaAs �75As, 69Ga, and 71Ga, respectively�. The Zee-
man splittings 	
 of these three species were fixed at
0.02526, 0.0354, and 0.045, again mimicking the ratios of
nuclear Zeeman energies in GaAs. Note that the 	
 are kept
fixed while the electron Zeeman splitting � is varied. Al-
though this does not correspond to realistic situation when all
the Zeeman energies are proportional to the B field, it allows
us to more clearly separate the effects that the electron and
nuclear Zeeman energies have on the time dependence of the
SE signal. Let us note that while the ratio � /	�103 in

GaAs, here we are using � /	�10–102 for the range of �
considered below. Another difference in comparison with the
realistic GaAs dot is that the differences of hf couplings
Aij �Ai−Aj �i.e., the differences of Knight shifts of different
nuclei� are of the same order of magnitude or larger than the
nuclear Zeeman energy differences 	ij, while in GaAs dot
with N�105 we have Aij �	ij in the whole range of B fields
for which ��1. Thus, unless we put all the Ai equal one to
another, we do not expect to see the 	ij-related oscillation in
the SE signal in the heteronuclear system �see Ref. 17 for
details on why the Aij �	ij condition is needed to obtain
these oscillations�. The existence of this oscillation has been
confirmed by recent experiments,26 and here we focus on
other aspects of SE decay dynamics.

III. RESULTS FOR SPIN ECHO

First, let us briefly recount what we expect to see in exact
numerics at not-too-low magnetic fields ���1� based on
previous analytical work on spin echo. There should be a
“visibility loss” initial decay of SE signal of amplitude ��2

occurring at time scale of �N /A �i.e., of order of O�N0� in
units employed here�, and we expect a qualitative difference
in the magnitude of SE decay between the homonuclear and
heteronuclear bath. The open questions are: what is the time
scale �R on which the RDT remain quantitatively accurate for
��1, and what happens at very low B fields at which �
�1 or even ��1.

In Fig. 1 we are presenting the results of exact calculation
for a hetero-nuclear bath with electron Zeeman energies �
� �0.1,5.5	 �corresponding to �� �0.18,10	�. As expected,
the exact calculation shows a very fast decay having �2 mag-
nitude for small �. In Fig. 2 we compare the exact results for
�=2.5 and 5.5 with the RDT calculations. These calcula-
tions were done using the Sz-conditioned interaction from
Eq. �2�, and also with the Sz-independent two-spin interac-
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FIG. 1. �Color online� SE decay for N=20 nuclei calculated
exactly for �=0.1, 1, 2.5, 5.5. The hf couplings Ai are given as set
3 in Table I. The energy units are such that �iAi

2=1. The corre-
sponding time units are such that T2

�=�8 �for comparison, T2
�

�10 ns in GaAs dots�.

CYWIŃSKI, DOBROVITSKI, AND DAS SARMA PHYSICAL REVIEW B 82, 035315 �2010�

035315-4



tion appearing in the third order of the expansion of the
effective Hamiltonian,17 in which the coupling constants are
smaller by A /N� factor. For �=2.5 one can see that this
third order interaction is not completely irrelevant, signifying
the importance of higher-order corrections to the effective
Hamiltonian approach. At even lower values of � the RDT
calculation fails to quantitatively describe the decay: not
only it does not capture the very fast initial drop, but also at
longer times it predicts a decay much faster than the one
given by the exact calculation �these results are not shown,
but the beginning of such disagreement between RDT and
the exact signal can be seen at �=2.5�. The oscillatory char-
acter of the �=0.1 signal will be discussed later in the paper.

On the other hand, at a slightly larger field �=5.5 �when
�=0.18�, the RDT calculation using only the lowest-order
hf-mediated interaction is approximating very closely the ex-
act result, and the higher-order corrections are irrelevant. The
comparison between RDT and PCA in this case shows how
the resummation of all the ring diagrams extends the time
scale on which the analytical theory closely matches the ex-
act calculation. With N=20 it is hard to say with full confi-
dence whether it is the smallness of A /� or �=A /�N�
which controls the agreement between the RDT calculation
and the exact result. However, it is clearly visible that the
onset of long-time agreement between the two calculations
correlates with the suppression of the short-time visibility
loss, which is known to be controlled by �. This strongly
suggests that it is indeed the smallness of � that makes the
RDT work. Finally, these results are showing that the time
scale on which the RDT calculation of SE signal is quanti-

tatively accurate visibly exceeds a value of �R�N /A��20,
which was conservatively estimated in Ref. 17.

In order to illustrate the degree to which the low-field SE
decay is dominated by processes involving nuclei of different
species, we have performed the calculations for the homo-
nuclear bath, in which we set all the nuclear Zeeman ener-
gies equal to a common value 	. In Fig. 3 we show the exact
calculation for �=1, 2.5, and 5.5. Now instead of the decay
reaching W�0.1 in Fig. 1 we see only the initial visibility
loss followed by an oscillation with frequency given by the
nuclear Zeeman splitting 	.

Within the RDT framework, the lowest-order term in H̃
which contributes to the SE decay in the homonuclear bath is

the Sz-independent two-spin interaction from H̃�3�. The decay
calculated by RDT with this interaction for �=2.5 in the
homonuclear case is very similar to the result shown in Fig.
2�a� as blue dashed line, and it does not show any oscillation.
The same holds for �=5.5 case, where RDT predicts prac-
tically no decay in the homonuclear case, while the exact
calculation gives the signal oscillating with the nuclear 	
frequency around the value of 1−�2. Similar oscillations
have been found before in numerical simulations of the mul-
tipulse dynamical decoupling protocols for an electron spin
decohered by the nuclear spin bath,23 where full hyperfine
interaction was considered. This shows that this oscillation is
a feature following from the full S ·Ji interaction between the
electron and the nuclear spins, and as such cannot be cap-
tured by the effective Hamiltonian theory. In this it is similar
to the fast initial oscillation with frequency �� accompany-
ing the visibility loss. In the next section we discuss a simi-
larity �also noticed in Ref. 23� between this oscillation and
the well-known electron spin echo envelope modulation42

�ESEEM�.
In Fig. 4 we show the comparison between the exact SE

decay in a hetero- and homonuclear bath at very low mag-
netic fields ���2.5�, at which the RDT fails quantitatively.
One can see that the qualitative difference between the SE
decay in the two cases �homo- vs heteronuclear bath� is also
clearly visible for �=1, which is already completely outside
the domain of applicability of RDT. In this strongly nonper-
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FIG. 2. �Color online� �a� Comparison between the exact �solid
line� result for �=2.5, the result obtained using the RDT �red
dashed line for 2nd order Sz-conditioned interaction from Eq. �2�,
blue dashed line for Sz-independent two-spin interaction for the
third order effective Hamiltonian�, and the result obtained using the
Pair Correlation Approximation from Ref. 6 �dot-dashed line�. �b�
same as �a� only with �=5.5.
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FIG. 3. �Color online� SE decay calculated exactly for N=20
with parameters as in Fig. 1, only with all nuclear Zeeman energies
set to 	=0.0354.
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turbative regime the magnitude of the initial decay ceases to
be equal to �2, and instead it is smaller �with W�0.7 after
the initial decay�. For the homonuclear bath we then have a
small-amplitude oscillation about this value, while the decay
in the heteronuclear case is practically complete on the con-
sidered time scale. At longer times this decay is very similar
to the signal for �=2.5, which also shows the robustness of
qualitative predictions of RDT outside the regime of its
quantitative applicability: within RDT one obtains
B-independent SE decay below a certain value of magnetic
field.17 At even lower values of � the situation changes: for
�=0.1 the homo- and heteronuclear case signals start to look
qualitatively similar. Although the physical picture of hf-
mediated interactions is not strictly applicable in this regime,
one could qualitatively describe this behavior by saying that
the higher order hf-mediated interactions �beyond the second
order one, for which the homo- and heteronuclear baths give
qualitatively different SE decay� become very strong, and the
difference between the two cases disappears. Thus, the oscil-
latory signal at �=0.1 has a common origin in homo- and
heteronuclear cases, and the discussion of it is given in the
next section. Let us also note that the �=0.1 SE signal for
the heteronuclear case does become negative at some times.

IV. DISCUSSION AND COMPARISON
WITH A SIMPLE MODEL

The presence of the oscillation with 	 frequency in a
homonuclear system can be derived using a simplified ex-
actly solvable model,8,10,43 in which all the hf couplings Ai

are put equal to the same value A=1 /�N. The hf Hamil-
tonian is then given by AS ·J with J��iJi being the operator
of the total spin of the N nuclei. The calculation of the evo-
lution of the system is most straightforward using the basis

of eigenstates of J2 and Ĵz. The only pairs of states coupled
by the Hamiltonian are then � , j ,m� and � , j ,m�1�, with
the first quantum number specifying the central spin state

��for electron spin up/down�, and we have J2j ,m�= j�j

+1�j ,m� and Ĵzj ,m�=mj ,m�. Such a simplification of the
dynamics of the system does not occur in a heteronuclear

case. There we have the full Hamiltonian given by Ĥ=�Ŝz

+�
	
Ĵ

z +�
A
S ·J
, and even if we put A
=A we must

retain distinct 	
. If we then look at the dynamics starting
with the initial state, say, +, �j
 ,m
�� �described by a set of
nJ pairs of quantum numbers j
 ,m
 for 
=1. . .nJ�, we see
that the Hamiltonian couples this state to a family of states
with central spin down and one m
 increased by 1. Now,
unlike in the homonuclear case, these states can also couple
to other states which have the electron spin up and m� �with
��
� decreased by 1. Thus, while in the homonuclear case
we only have to solve multiple two-state problems to obtain
the system dynamics, in the heteronuclear case we still have
to consider Hilbert spaces of dimensions as large as
2�
�N
+1� where N
 is the number of nuclei of 
 species.

The details of this calculation are given in Appendix B,
here we focus on the result shown in Fig. 5. In Fig. 5�a� we
present a comparison between the exact calculation with
nonuniform Ai �solid lines� and the uniform Ai calculation
�dashed lines�. The slow oscillation with frequency �	 and
the amplitude of the signal is reproduced by the “box wave
function” calculation. The fast oscillation �with frequency
proportional to �� visible in the constant Ai calculation is the
small N artifact related to artificially regular structure of the
Hamiltonian spectrum when all Ai are the same. In Fig. 5�b�
we show the uniform Ai results for N=20, 103, and 104. At
larger N the fast oscillations disappear, and the shift of the
oscillation frequency, while visible, saturates quickly �the re-
sults for N=103 and 104 are practically the same�. This al-
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FIG. 4. �Color online� Comparison of the spin echo decay in a
heteronuclear bath �dashed lines, parameters the same as in Fig. 1�
and a homonuclear bath �solid lines, parameters the same as in Fig.
3� for �=2.5, 1, 0.1 �with the initial decay smallest for the largest
��.
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FIG. 5. �Color online� �a� The comparison between the exact
results �solid lines� for spin echo in a homonuclear system �with the
nuclear Zeeman energy 	=0.0354� for electron spin splitting �
=2.5, 0.1 and the results obtained within the model with all the hf
couplings Ai being the same �dashed lines�. �b� The comparison of
such box-wave function calculations with different numbers of nu-
clei N for �=2.5. The fast oscillation is an artifact of small N and
the box model, and it disappears with increasing N.
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lows us to conclude that the presence of the 	-oscillation is
not a small N effect, and that such an oscillation should be
present in the SE signal of a central spin interacting with a
large homonuclear bath.

For large N the uniform Ai model corresponds to the situ-
ation in which a central spin S interacts with a large spin J.
This leads us to a natural conjecture that the 	-oscillation
follows from classical dynamics of the total nuclear spin, i.e.,
it can be recovered from classical equations of motion for
two spins coupled by isotropic Heisenberg coupling and each
experiencing a different Zeeman splitting. Since the typical
magnitude of the classical nuclear spin J is proportional to
�N, the electron spin precession due to hf coupling is much
faster than the nuclear spin precession due to interaction with
the electron spin.41 This leads to averaging out of the
electron-induced nuclear precession, which leaves only the
nuclear spin precession due to the Zeeman term. One is then
looking at a problem of electron spin dynamics due to the
magnetic field and also due to the hf coupling with the clas-
sical J vector precessing with frequency 	 about the z axis.
The appearance of 	 frequency in SE signal is then natural.
Our preliminary calculations involving averaging of the clas-
sical dynamics of coupled S and J spins over the ensemble
of initial values of J0 �without making the adiabatic approxi-
mation used above� support this conjecture. This conjecture
is also in agreement with the physical picture suggested to
explain similar oscillations for multipulse dynamical decou-
pling protocols.23

Here we can comment on the �=0.1 result from Figs. 1
and 4. At such a low electron spin splitting the SE signal
oscillations are present also for the heteronuclear bath. These
oscillations are controlled mostly by the three nuclear Zee-
man frequencies �which we checked by varying 	
, not
shown in the figures�, suggesting that the physical picture
described above, albeit with three classical nuclear spins,
might be a starting point for the description of very low B
behavior of the spin echo.

For ��1 one can also see a close connection between
	-oscillation of the SE signal and the ESEEM, discussed
previously40 in the case of a central spin interacting via an-
isotropic hf interaction with the nuclei,44 in which case the

ĴxŜz coupling was a source of an oscillation of the SE signal.
In our case, if we neglect the “visibility loss” effect, the

effective Hamiltonian for ��1 is given by the sum of Ĥ0

=�Ŝz+	Ĵz+AŜzĴz and the hf-mediated interaction from Eq.
�2�, for which we obtain a perfect recovery of coherence in
SE experiment. However, the initial “visibility loss” corre-
sponds to a tilt of the electron spin quantization axis from the
original z direction by an angle proportional to �, and thus

the decrease of 
Ŝz� by a factor ��2. If we then rotate the
coordinate system so that the new z� direction is along the
new electron spin quantization axis, we will obtain the terms

of Ŝz�Ĵx� type in Ĥ0 defined above, thus arriving at the prob-
lem analogous to ESEEM due to anisotropic hf interactions.

The “box wave function” approach was used previously
to calculate low-B free evolution of Sz component of the
central spin,10 and it was shown to agree with the exact so-
lution �for a system with inhomogeneous Ai� on the time
scale of T2

���N /A. Above we have seen that the box model

captures the main features of the SE signal in a homonuclear
bath on a much longer time scale, which exceed not only T2

�

but also N /A.
Interestingly, this agreement between the “box” model

and the exact calculation breaks down at shorter time scale
for the heteronuclear bath. In Fig. 6 we show the comparison
between the nonuniform Ai calculations and the “box” results
for homo- and heteronuclear baths �at �=2.5, 5.5 and with
N=20, 40 nuclei�. The RDT results obtained with the uni-
form hf couplings are also shown �this calculation gives the
SE signal independent of N�. For �=2.5 there is an obvious
difference in long-time behavior between the “box” calcula-
tion and the calculation with nonuniform Ai. The “box” cal-
culation exhibits a saturation of the SE signal at t�400 �with
the signal staying close to this value for much longer times,
not shown in the figure�. However, the amplitude of this
saturation decreases with increasing N. While we have
2
Sx�sat�0.46 for N=20, for N=40 we obtain a value of
about 0.22, suggesting that these results are affected by
finite-N effects. The reason for which the these effects are
spoiling the agreement between the exact and “box” calcula-
tion only in the heteronuclear case remains to be further elu-
cidated.

At higher �, as in Fig. 6�a�, the finite-N effect is weaker,
and with N=40 the RDT and the full-Hamiltonian calcula-
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FIG. 6. �Color online� �a� Comparison of the SE signal calcu-
lated with non-uniform hf couplings �red and blue solid lines� and
with all Ai=A �dashed lines for N=20, circles for N=40� for homo-
nuclear and heteronuclear baths with N=20 and at �=5.5. The thin
black solid line is the RDT result for uniform couplings �which is N
independent�. �b� The same for �=2.5.
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tion agree very well for uniform Ai. Both of these signals
exhibit a somewhat faster decay than the exact result with
nonuniform couplings �which is well reproduced by the RDT
calculation with nonuniform Ai, as shown in Fig. 2�b�	. This
shows that at N=20 the choice of the specific set of Ai cou-
plings can have a visible impact on the SE signal. This is
discussed in more details in Appendix A.

V. CONCLUSIONS

It this paper we have investigated the low magnetic field
spin echo �SE� signal of an electron spin interacting via the
hyperfine �hf� coupling with the nuclear bath. Intrabath dipo-
lar interactions have been neglected. We have used three the-
oretical approaches: the exact numerical solution for a rela-
tively small nuclear bath, the analytical theory based on
resummation of ring diagrams,16,17 and calculations in which
uniform hf coupling with all the nuclei was assumed.

The exact numerical calculation strongly suggests that the
ring diagram theory �RDT� describes quantitatively the SE
decay when the electron Zeeman splitting � is much larger
than the typical Overhauser field A /�N �with A being the
total hyperfine interaction and N being the number of nuclei�.
The time scale �R on which RDT describes quantitatively the
SE decay well has been shown to visibly exceed N /A. A
qualitative difference between the SE decay due to interac-
tion with the homonuclear and the heteronuclear bath �con-
taining nuclei with distinct Zeeman splittings� is still clearly
visible in the numerical calculation for ��A /�N �corre-
sponding to �10 mT in large GaAs dots�. Generally, we
have found that qualitative and even semiquantitative predic-
tions of the RDT are robust down to these fields. The satu-
ration of the spin echo decay time at low magnetic fields had
been predicted before using the RDT,16,17 and our new re-
sults lead us to expect that this behavior will be robust down
to B fields corresponding to typical Overhauser field, i.e., we
predict the SE decay to be practically B-independent be-
tween 10 and 100 mT in GaAs quantum dot with �105 nu-
clei.

Also, we have found that the SE signal in a homonuclear
bath oscillates with the Zeeman frequency of the single
present nuclear species. This effect is related to the well-
known ESEEM phenomenon, but to our knowledge its pres-
ence has not been discussed for the spin echo signal in case
of the isotropic hf coupling. This feature might be observed
in spin echo experiments on spin qubits in quantum dots
based on materials having a single nuclear species, e.g.,
silicon,45,46 carbon nanotubes,47 or graphene.48 In a hetero-
nuclear bath �e.g., in GaAs� we have found that at very low
magnetic fields �smaller than the typical Overhauser field�
the spin echo signal exhibits strong oscillations in which the
Zeeman frequencies of all the nuclear species are present.

Finally, we have shown that using a simplified model of
uniform hf couplings �corresponding to using a boxlike elec-
tron wave function� we can recover certain qualitative fea-
tures of the SE signal at time scale exceeding both T2

� and
N /A. While the nearly perfect disentanglement of electron
spin and nuclear bath by the SE sequence was discussed
previously at high magnetic fields,6,21 this result of our work

suggests that the dynamics of coherence recovery in the SE
experiment is quite closely related to classical dynamics of
coupled electron and nuclear spins also at much lower mag-
netic fields. The implications of this observation, and also the
analysis of accuracy of analytical theories using the effective
hf-mediated interaction for modeling of the narrowed free
induction decay, are left for future research.
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APPENDIX A: DEPENDENCE OF THE SPIN ECHO
SIGNAL ON THE CHOICE OF HYPERFINE COUPLINGS

In this work we choose the hf couplings Ai randomly from
a uniform distribution. The realistic distribution �A� of the
Ai couplings is related to the shape of the envelope wave
function ��r� of the electron,

�A� =
1

�0
�

V

��A − A��r�2�d3r , �A1�

where V is the total volume, �0 is the volume of the unit cell,
and the wave function normalization is �V��r�2dr=�0. For
the wave function being a two-dimensional Gaussian we
have �A��A−1��Amax−A�, where ��x� is the Heaviside
step function and Amax is the largest hf coupling �for the
nucleus located at the center of the wave function�. �A� for
a more realistic electron envelope is given in Ref. 17, and it
behaves in qualitatively similar way. The key point is that if
we are only concerned about the most strongly coupled nu-
clei, with Ai not much smaller than Amax �which naturally
dominate the decay at short times, and possibly determine
most of the decay at low B fields�, the approximation of �A�
by a constant is reasonable.

The long-time dynamics of the electron spin was pre-
dicted to be influenced by the shape, specifically the tails, of
the electron wave function,15,17,18,49–51 and thus the details of
the distribution �A� for small A. These features of �A� are
impossible to capture with only N=20 spins. We are, how-
ever, not currently concerned about this. The recent
experiments26 are showing that the low B field SE decay
occurs on time scale �N /A, on which according to the RDT
the wave function shape is relatively unimportant. Thus the
question of low-field accuracy of the RDT for an uniform
distribution of Ai is well motivated.

It is nevertheless prudent to check how our results depend
on the randomly chosen set of Ai. The reasonable expectation
is that for large N the choice should not matter. This is not
the case with N�10, with which both the exact and RDT
results are showing very diverse behavior beyond the short
time limit �i.e., t�100 for N=10�. Unsurprisingly, for such
small N the agreement between the two calculations is also
present only for these short times. For N=20 the situation
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already becomes much closer to our expectations. In Fig. 7
we present the RDT results for 20 random choices of the set
of Ai couplings at �=5.5. One can see that the typical decay
signal is clearly visible. However, there are still sets of hf
couplings which give SE signals visibly differing from the
typical behavior. The two most extreme cases are drawn with
dashed lines in Fig. 7. The set of Ai used in previous calcu-
lations corresponds to the dot-dashed line. This signal is
quite close to the typical one, although it does possess char-
acteristic features. These features closely correspond to the
ones of the exact signal shown before in Fig. 2�b�, showing
that at �=5.5 the RDT calculation is very close to the exact
one for “typical” choice of Ai.

In Fig. 8 we present the comparison between the RDT and
exact results for two sets of Ai corresponding to most atypi-
cal results from Fig. 7. The values of hf couplings used in
these calculations are given in Table I, together with the set
of Ai used in most of the other figures in the paper. For the
signal showing very weak decay �set 1� we find quite good
agreement. For the signal exhibiting a sharp peak �set 2� the
agreement could be considered quantitative.

We have checked that the special behavior in case of set 2
is due to presence of a large number of very small couplings
in this set. In fact, one can remove more than 10 smallest Ai
from this set without visibly affecting the results, while the
decay becomes completely different �and much weaker�
when one of the large couplings, A19, is removed.

In the case of set 1, the agreement is almost quantitative
�only the slow oscillation seems to be the artifact of RDT� As
for the reason for the exceptionally weak decay, it is possible
that after removing the Ai couplings which are too small to
visibly affect the signal, the remaining couplings, especially
the ones for different species of nuclei �since hetero-nuclear
interactions are crucial for SE decay� are too uniform. We
note that as shown in Fig. 6, the decay for N=20 with uni-
form couplings saturates at about a half of initial value of the

signal. This saturation effect becomes weaker when N is in-
creased.

It is also interesting to consider how the choice of the hf
coupling parameters affects the SE signal in the experimen-
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FIG. 8. �Color online� The comparison the the RDT calculation
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TABLE I. Three sets of hf couplings Ai: sets 1 and 2 correspond,
respectively, to the most weakly decaying signal and to the signal
with prominent peak at t�350 shown in Fig. 7, while set 3 has
been used in all the previous figures. The values of 	i nuclear
Zeeman energies are: 	i=0.02526 for i�10, 	i=0.0354 for i
� �11,16	 and 	i=0.045 for i� �17,20	.

spin number i Ai �set 1� Ai �set 2� Ai �set 3�

1 0.1236 0.2681 0.2167

2 0.3984 0.3087 0.1746

3 0.0376 0.1651 0.1033

4 0.1999 0.2836 0.2253

5 0.0017 0.3709 0.2974

6 0.1120 0.0088 0.1769

7 0.0007 0.0383 0.2123

8 0.0960 0.4457 0.3171

9 0.0723 0.2978 0.3479

10 0.1360 0.1057 0.1659

11 0.0887 0.1845 0.1655

12 0.0704 0.0558 0.2818

13 0.3039 0.1227 0.0928

14 0.4572 0.1179 0.1386

15 0.4767 0.1516 0.1520

16 0.1122 0.0696 0.1225

17 0.2449 0.1591 0.0926

18 0.1908 0.0556 0.1416

19 0.2658 0.4042 0.3951

20 0.1344 0.0431 0.3001
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tally relevant limit of very large N. We consider the SE sig-
nal S�t�, given by

S�2�� = Tr�Ŝxe
−iĤ��̂xe

−iĤ�Ŝxe
iĤ��̂xe

iĤ�	 , �A2�

which is just another way to write Eq. �4�. To access the limit
of large N, we can use the Levy’s lemma.52,53 It states that
for a function f�x�� defined on a �N−1�-dimensional hyper-
sphere x� �SN−1, and satisfying the 1-Lipshitz condition, the
value of the function at a randomly chosen point is close to
the average value of this function 
f� with very high prob-
ability:

Prob�f�x�� − 
f� � �	 � exp�− CN�2/L2� �A3�

where L=sup�f  is the Lipshitz constant. We use the vector
�A1 ,A2 , . . .Ak . . . ,AN� of the coupling constants, with normal-
ization �kAk

2=1, as a point x� on a N-dimensional hyper-
sphere, and the SE signal S�t� as a function f�x��. To evaluate
L, we have to find the derivatives of �S�t� /�Ak, taking into
account that the only quantity dependent on Ak in Eq. �A2� is

the Hamiltonian Ĥ. Thus, we need to substitute the equality

�

�Ak
e−iĤ� = e−iĤ��

0

�

dseiĤs �Ĥ

�Ak
e−iĤs = e−iĤ��

0

�

ds�SJk��s�

�A4�

�and its Hermitian-conjugated version� into four places in

Eq. �A2�. In the Equation above �SJk��s�=eiĤs�SJk�e−iĤs.
Furthermore, we should take into account that the trace of a

matrix product Tr�Â†B̂	 has all properties of the scalar prod-
uct, so that

Tr�A†B	 � �Tr�Â†Â	Tr�B̂†B̂	 = �Â��B̂� , �A5�

where �A�=�Tr�A†A	. As a result, we obtain

� �S�t�
�Ak

� � 4�Ŝx
2��

0

�

ds��SJk��s�� = �2�
0

�

ds��SJk��s�� .

�A6�

Therefore,

� �S�t�
�Ak

� � C1t �A7�

with some constant C1 independent of N, and for the Lipshitz
constant we obtain

L � C1t�N . �A8�

Thus, for t�1 �in our dimensionless units, where �kAk
2=1�,

the specific choice of the hf coupling parameters does not
matter.

However, it is obvious that our rigorous estimate Eq.
�A6�, which is based on straightforward use of the Cauchy
inequality, is too crude. Heuristically, we expect that the cor-
relation between the central spin and a single bath spin,
which we crudely estimated from above as O�1�, is actually
of order of O�1 /N�. Then, the range of times where the
choice of the hf parameters does not matter, is extended to
t�N.

APPENDIX B: SPIN ECHO IN A MODEL
WITH UNIFORM HF COUPLINGS

We rewrite Eq. �4� using the basis of � , j ,m� states �with
electron states �x�= �+�� −�� /�2	 and with �� t /2


Ŝx�t�� =
1

2N�
j

�
m=−j

j

Dj
+ x, j,meiĤt��̂xe
iĤ� �̂x

2
e−iĤ��̂x

�e−iĤ�+ x, j,m� , �B1�

where the sum over j is from 0 to N /2 �1/2 to N /2� for even
�odd� number of nuclei N, and the degeneracies of states with
given j are given by43

Dj =
N!

�N/2 − j�!�N/2 + j�!
2j + 1

N/2 + j + 1
. �B2�

As discussed in Sec. IV, the Hamiltonian couples only
pairs of � , j ,m� states:

e−iĤ�+ , j,m� = ajm+ , j,m� + bjm− , j,m + 1� , �B3�

e−iĤ�− , j,m� = cjm− , j,m� + djm+ , j,m − 1� , �B4�

and the coefficients ajm and bjm are given by

ajm = e−iEm
+ ��cos

Njm
+

2
� − i

Zm
+

Njm
+ sin

Njm
+

2
�� , �B5�

bjm = − ie−iEm
+ �

Xjm
+

Njm
+ sin

Njm
+

2
� , �B6�

and cjm and djm are given by analogous expressions with
superscripts + replaced by −. Em

�, X�, Z� and N� are given
by

Em
� = ��2m � 1�	 − A/2	/2, �B7�

Xjm
� = A�j�j + 1� − m�m � 1� , �B8�

Zm
� = � �� − 	 + A�m � 1/2�	 , �B9�

Njm
� = ��Xjm

� �2 + �Zm
��2. �B10�

Plugging these into Eq. �B1� and into an analogous ex-

pression for 
Ŝy�t�� �in which the middle �̂x operator is re-
placed by �̂y� we arrive at the formula for the decoherence
function

WSE�t� = �
j=0

N/2

�
m=−j

j
Dj

2N �ajmcjm2 + ajmcjm−1
� djm2

+ ajm+1cjm
� bjm2� . �B11�

In the case of heteronuclear bath with NJ nuclear species
one has to introduce Nj sets of basis states j
 ,m
� in Eq.
�B1�. The Hamiltonian is then coupling the whole subspaces
of fixed j
, and one has to consider Hamiltonian matrices of
dimension 2�
�2j
+1� and evaluate the evolution operators
numerically.
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